Journal of Experimental Botany Advance Access published May 8, 2014

Journal of Experimental Botany doi:10.1093/jxb/eru169

RESEARCH PAPER

When do different C_4 leaf anatomies indicate independent C_4 origins? Parallel evolution of C_4 leaf types in Camphorosmeae (Chenopodiaceae)

Gudrun Kadereit^{1,*}, Maximilian Lauterbach¹, Michael D. Pirie^{1,2}, Rami Arafeh³ and Helmut Freitag⁴

- ¹ Institut für Allgemeine und Spezielle Botanik und Botanischer Garten der Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
- ² Department of Biochemistry, University of Stellenbosch, Matieland 7600, South Africa
- ³ Biotechnology Research Center, Palestine Polytechnic University, PO Box 198, Hebron, Palestine
- ⁴ Institut für Biologie, Arbeitsgruppe Systematik und Morphologie der Pflanzen, Universität Kassel, D-34109 Kassel, Germany

Received 5 November 2013; Revised 11 March 2014; Accepted 21 March 2014

Abstract

Broad-scale phylogenetic studies give first insights in numbers, relationships, and ages of C_4 lineages. They are, however, generally limited to a model that treats the evolution of the complex C_4 syndrome in different lineages as a directly comparable process. Here, we use a resolved and well-sampled phylogenetic tree of Camphorosmeae, based on three chloroplast and one nuclear marker and on leaf anatomical traits to infer a more detailed picture of C_4 leaf-type evolution in this lineage. Our ancestral character state reconstructions allowed two scenarios: (i) Sedobassia is a derived C_3/C_4 intermediate, implying two independent gains of C_4 in Bassia and Camphorosma; or (ii) Sedobassia is a plesiomorphic C_3/C_4 intermediate, representing a syndrome ancestral to the Bassia/Camphorosma/Sedobassia lineage. In Bassia, a kochioid leaf type (Bassia muricata and/or Bassia prostrata type) is ancestral. At least three independent losses of water-storage tissue occurred, resulting in parallel shifts towards an atriplicoid leaf type. These changes in leaf anatomy are adaptations to different survival strategies in steppic or semi-desert habitats with seasonal rainfall. In contrast, Camphorosma shows a fixed C_4 anatomy differing from Bassia types in its continuous Kranz layer, which indeed points to an independent origin of the full C_4 syndrome in Camphorosma, either from an independent C_3 or from a common C_3/C_4 intermediate ancestor, perhaps similar to its C_3/C_4 intermediate sister genus Sedobassia. The enlarged bundle sheath cells of Sedobassia might represent an important early step in C_4 evolution in Camphorosmeae.

Key words: Bassia, bundle sheath, C₄ photosynthesis, Camphorosma, Kranz anatomy, Sedobassia, water-storage tissue.

Introduction

Phylogenetic inference methods present a powerful means of identifying putative shifts between C_3 and C_4 photosynthesis (Sage *et al.*, 2011, and references therein). If photosynthetic syndrome is treated as a single (functional) character with two states (either C_3 or C_4), it is straightforward to infer the number and timing of shifts between states in a given

clade. On this basis, Christin *et al.* (2008) inferred numerous independent origins of C₄ and dated them to the Oligocene decline in atmospheric CO₂. However, the C₄ syndrome is both complex (comprising multiple individual adaptations) and diverse (the adaptations differ across clades), and may have originated in response to different selective pressures in

^{*} To whom correspondence should be addressed. E-mail: clausing@uni-mainz.de